Pressure induced magneto-structural phase transitions in layered RMn2X2 compounds (invited)
نویسندگان
چکیده
We have studied a range of pseudo-ternaries derived from the parent compound PrMn2 Ge 2, substituting for each constituent element with a smaller one to contract the lattice. This enables us to observe the magnetoelastic transitions that occur as the Mn-Mn nearest neighbour distance is reduced and to assess the role of Pr on the magnetism. Here, we report on the PrMn2 Ge 2−xSix, Pr1−xYxMn2 Ge 2, and PrMn2−xFex Ge 2 systems. The pressure produced by chemical substitution in these pseudo-ternaries is inherently non-uniform, with local pressure variations dependent on the local atomic distribution. We find that concentrated chemical substitution on the R or X site (e.g., in Pr 0. 5 Y 0. 5 Mn 2 Ge 2 and PrMn 2 Ge 0. 8 Si 1. 2) can produce a separation into two distinct magnetic phases, canted ferromagnetic and canted antiferromagnetic, with a commensurate phase gap in the crystalline lattice. This phase gap is a consequence of the combination of phase separation and spontaneous magnetostriction, which is positive on transition to the canted ferromagnetic phase and negative on transition to the canted antiferromagnetic phase. Our results show that co-existence of canted ferromagnetic and antiferromagnetic phases depends on chemical pressure from the rare earth and metalloid sites, on local lattice strain distributions and on applied magnetic field. We demonstrate that the effects of chemical pressure bear close resemblance to those of mechanical pressure on the parent compound.
منابع مشابه
New insight into magneto-structural phase transitions in layered TbMn2Ge2-based compounds
The Tb1-xYxMn2Ge2 series (x = 0, 0.1, 0.2) compounds are found to exhibit two magnetic phase transitions with decreasing temperature: from the paramagnetic state to the antiferromagnetic interlayer state at TNinter and from an antiferromagnetic interlayer structure to a collinear ferrimagnetic interlayer structure at TCinter. Compared with the slight change of TNinter (409 K, 410 K and 417 K fo...
متن کاملClosed Form Solution for Electro-Magneto-Thermo-Elastic Behaviour of Double-Layered Composite Cylinder
Electro-magneto-thermo-elastic response of a thick double-layered cylinder made from a homogeneous interlayer and a functionally graded piezoelectric material (FGPM) outer layer is investigated. Material properties of the FGPM layer vary along radius based on the power law distribution. The vessel is subjected to an internal pressure, an induced electric potential, a uniform magnetic field and ...
متن کاملA Simultaneous Magneto-Dielectric Phase Transition in RbCoBr3
We have modeled magneto-dielectric phase transitions in ABX3-type layered triangular lattice compounds. The model consists of a spin system (magnetic transition) and a lattice system (dielectric transition). Magnetic exchange interactions are supposed to change with a relative position between two spins. This assumption produces an effective coupling between the lattice and the spin. Applying t...
متن کاملGCMC Glauber dynamics study for structural transitions in YBCOx (0<x<1), HTc system
We have chosen an Ising ASYNNNI (ASYmmetric Next Nearest Neighbor Interaction) model under a grand canonical regime to investigate structural phase transition from a high symmetric tetragonal (Tet) to a low symmetric orthorhombic in YBa2Cu3O6+x , 0<x<1, HTc system. Ordering process for absorbed oxygens from an external gas bath into the basal plane of the layered system is studied by Monte C...
متن کاملنقش دینامیک شبکه در ابررسانای La2-xBaxCuO4 به روش DFT
Electron-phonon coupling parameters are calculated for La2-x BaxCuO4 cuprate superconductor in a wide range of dopings, from undoped to overdoped compounds. In this study we aim to study the quality of such calculations based on DFT method so, the results of σ GGA+U electronic structure calculations are also investigated. The obtained value for electron-phonon coupling is in the same order of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017